Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrew D. Bond, ${ }^{\text {a }}{ }^{\text {* Jonathan }}$ Clayden ${ }^{\text {b }}$ and Andrew E. H. Wheatley ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England, and ${ }^{\text {b }}$ Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, England

Correspondence e-mail: adb29@cam.ac.uk

Key indicators

Single-crystal X-ray study
$T=180 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.065$
$w R$ factor $=0.148$
Data-to-parameter ratio $=14.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

N, N-Diisopropyl-1-naphthamide

The crystal structure of N, N-diisopropyl-1-naphthamide, $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}$, has been determined at 180 K . The molecular conformation is such that the plane of the amide group is approximately perpendicular to the plane of the naphthalene unit. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions link the molecules into chains running along the b direction.

Comment

The use of directed orthometallation involving amide-type functional groups in general, and tertiary amides in particular, has revolutionized the synthesis of complex benzenoid aromatic compounds (Snieckus, 1990).

It is generally assumed that $\mathrm{O}-\mathrm{Li}$ coordination is maintained from the reactive complex through to the products, but in the case of the tertiary amides such coordination is problematic. A tertiary amide group, even in a simple aromatic amide, lies twisted out of the plane of the benzene ring for steric reasons (Bowles et al., 1997), discouraging direct coordination of an oxygen lone pair to a 2 -lithio substituent. It is clear that the twist angle affects the rate of lithiation (Beak et al., 1993), but even amides which are nearly perpendicular, e.g. naphthamides, undergo efficient ortholithiation (Clayden et al., 1999).

(I)

In light of the effect of amide twist angle on lithiation, we have investigated both aromatic tertiary amides and their lithiated derivatives. We report here the structure of N, N -diisopropyl-1-naphthamide, (I), determined at 180 K .

The molecular conformation in (I) is such that the plane of the amide group forms an angle of $83.4(2)^{\circ}$ with the leastsquares plane through the naphthalene unit. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions exist between the H atom in the 5-position of the napthalene ring and the carboxyl group of a neighbouring molecule $\left[\mathrm{H} 5 \cdots \mathrm{O} 1^{\mathrm{i}}=2.41 \AA, \quad \mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 1^{\mathrm{i}}=161.7^{\circ}\right.$; symmetry code: (i) $\left.1-x,-\frac{1}{2}+y, \frac{1}{2}-z\right]$. These interactions link the molecules into chains running along the b direction.

Received 17 January 2001 Accepted 21 February 2001 Online 28 February 2001

Figure 1
The molecular unit in (I) showing displacement ellipsoids at the 50% probability level ($X P$; Sheldrick, 1993).

Experimental

1-Naphthoyl chloride $(5.4 \mathrm{ml}, 35.8 \mathrm{mmol})$ was added dropwise to diisopropylamine $(9.8 \mathrm{ml}, 74.7 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ at 273 K and the mixture was stirred for 24 h at room temperature after which time $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{ml})$ was added. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 30 \mathrm{ml})$ and the organic extracts washed with $\mathrm{H}_{2} \mathrm{O}, 1 M \mathrm{HCl}$ and saturated $\mathrm{NaHCO}_{3}(25 \mathrm{ml}$ each $)$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent afforded the title compound, which was recrystallized from tetrahydrofuran.

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}$
$D_{x}=1.169 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 13372 reflections
$\theta=1.0-25.0^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=180$ (2) K
Plate, colourless
$0.21 \times 0.14 \times 0.05 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer 1725 reflections with $I>2 \sigma(I)$
Thin-slice ω and φ scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.992, T_{\text {max }}=0.997$
8393 measured reflections
2494 independent reflections

$$
\begin{aligned}
& R_{\text {int }}=0.064 \\
& \theta_{\max }=24.9^{\circ} \\
& h=-7 \rightarrow 8 \\
& k=-16 \rightarrow 16 \\
& l=-17 \rightarrow 16
\end{aligned}
$$

Figure 2
Projection onto (100) showing molecules of (I) linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions into chains running along the b direction. (CAMERON; Watkin et al., 1996)

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0467 P)^{2}\right. \\
& \quad+0.8144 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.026 \\
& \Delta \rho_{\max }=0.27 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}
\end{aligned}
$$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5 $\cdots \mathrm{O}^{1}{ }^{\mathrm{i}}$	0.95	2.41	$3.327(3)$	162

Symmetry code: (i) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$.
All H atoms were placed geometrically and allowed to ride during subsequent refinement with an isotropic displacement parameter fixed at $1.2 U_{\text {eq }}$ for the carbon to which the hydrogen was attached. For the methyl groups, $U_{\text {iso }}$ was fixed at $1.5 U_{\text {eq }}$ for the carbon.

Data collection: COLLECT (Nonius BV, 1998); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

We thank the EPSRC for financial assistance with purchase of the CCD diffractometers.

References

Beak, P., Kerrick S. T. \& Gallagher, D. J. (1993). J. Am. Chem. Soc. 115, 1062810636.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bowles, P., Clayden, J., Helliwell, M., McCarthy, C., Tomkinson, M. \& Westlund, N. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 2607-2616.
Clayden, J., Frampton, C. S., McCarthy, C. \& Westlund, N. (1999). Tetrahedron, 55, 14161-14184.
Nonius (1998). COLLECT. Enraf-Nonius, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Sheldrick, G. M. (1993). XP. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Snieckus, V. (1990). Chem. Rev. 90, 879-933.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

