organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andrew D. Bond,^a* Jonathan Clayden^b and Andrew E. H. Wheatley^a

^aDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England, and ^bDepartment of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, England

Correspondence e-mail: adb29@cam.ac.uk

Key indicators

Single-crystal X-ray study T = 180 KMean σ (C–C) = 0.004 Å R factor = 0.065 wR factor = 0.148 Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N,N-Diisopropyl-1-naphthamide

The crystal structure of N,N-diisopropyl-1-naphthamide, $C_{17}H_{21}NO$, has been determined at 180 K. The molecular conformation is such that the plane of the amide group is approximately perpendicular to the plane of the naphthalene unit. $C-H \cdots O$ interactions link the molecules into chains running along the *b* direction.

Received 17 January 2001 Accepted 21 February 2001 Online 28 February 2001

Comment

The use of directed orthometallation involving amide-type functional groups in general, and tertiary amides in particular, has revolutionized the synthesis of complex benzenoid aromatic compounds (Snieckus, 1990).

It is generally assumed that O-Li coordination is maintained from the reactive complex through to the products, but in the case of the tertiary amides such coordination is problematic. A tertiary amide group, even in a simple aromatic amide, lies twisted out of the plane of the benzene ring for steric reasons (Bowles *et al.*, 1997), discouraging direct coordination of an oxygen lone pair to a 2-lithio substituent. It is clear that the twist angle affects the rate of lithiation (Beak *et al.*, 1993), but even amides which are nearly perpendicular, *e.g.* naphthamides, undergo efficient ortholithiation (Clayden *et al.*, 1999).

In light of the effect of amide twist angle on lithiation, we have investigated both aromatic tertiary amides and their lithiated derivatives. We report here the structure of N,N-diisopropyl-1-naphthamide, (I), determined at 180 K.

The molecular conformation in (I) is such that the plane of the amide group forms an angle of 83.4 (2)° with the leastsquares plane through the naphthalene unit. $C-H\cdots O$ interactions exist between the H atom in the 5-position of the napthalene ring and the carboxyl group of a neighbouring molecule $[H5\cdots O1^{i} = 2.41 \text{ Å}, C5-H5\cdots O1^{i} = 161.7^{\circ};$ symmetry code: (i) $1 - x, -\frac{1}{2} + y, \frac{1}{2} - z$]. These interactions link the molecules into chains running along the *b* direction.

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular unit in (I) showing displacement ellipsoids at the 50% probability level (*XP*; Sheldrick, 1993).

Experimental

1-Naphthoyl chloride (5.4 ml, 35.8 mmol) was added dropwise to diisopropylamine (9.8 ml, 74.7 mmol) in Et₂O (50 ml) at 273 K and the mixture was stirred for 24 h at room temperature after which time H₂O (40 ml) was added. The aqueous phase was extracted with Et₂O (3×30 ml) and the organic extracts washed with H₂O, 1 *M* HCl and saturated NaHCO₃ (25 ml each) and dried (MgSO₄). Removal of the solvent afforded the title compound, which was recrystallized from tetrahydrofuran.

Crystal data

 $C_{17}H_{21}NO$ $M_r = 255.35$ Monoclinic, $P2_{1}/c$ a = 7.5403 (10) Å b = 13.6498 (19) Å c = 14.4042 (11) Å $\beta = 101.958 (8)^{\circ}$ $V = 1450.4 (3) \text{ Å}^{3}$ Z = 4

Data collection

Nonius KappaCCD diffractometer Thin-slice ω and φ scans Absorption correction: multi-scan (*SORTAV*; Blessing, 1995) $T_{\min} = 0.992$, $T_{\max} = 0.997$ 8393 measured reflections 2494 independent reflections
$$\begin{split} &1725 \text{ reflections with } I > 2\sigma(I) \\ &R_{\text{int}} = 0.064 \\ &\theta_{\text{max}} = 24.9^{\circ} \\ &h = -7 \rightarrow 8 \\ &k = -16 \rightarrow 16 \\ &l = -17 \rightarrow 16 \end{split}$$

 $D_x = 1.169 \text{ Mg m}^{-3}$

Cell parameters from 13372

Mo $K\alpha$ radiation

reflections

T = 180 (2) K

Plate, colourless

 $0.21 \times 0.14 \times 0.05 \text{ mm}$

 $\theta = 1.0-25.0^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$

Figure 2

Projection onto (100) showing molecules of (I) linked by $C-H\cdots O$ interactions into chains running along the *b* direction. (*CAMERON*; Watkin *et al.*, 1996)

organic papers

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0467P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.065$	+ 0.8144P]
$wR(F^2) = 0.148$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} = 0.026$
2494 reflections	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
176 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table	1
-------	---

Selected geometric parameters (Å, °).

O1-C11	1.236 (3)	C5-C6	1.360 (4)
N1-C11	1.351 (3)	C5-C10	1.409 (4)
N1-C12	1.481 (3)	C6-C7	1.394 (4)
N1-C15	1.485 (3)	C7-C8	1.358 (4)
C1-C2	1.364 (3)	C8-C9	1.422 (3)
C1-C9	1.412 (3)	C9-C10	1.432 (4)
C1-C11	1.519 (4)	C12-C13	1.514 (4)
C2-C3			1.518 (3)
C3-C4			1.521 (4)
C4-C10	1.405 (4)	C15-C17	1.521 (4)
C11-N1-C12	122.7 (2)	C1-C9-C10	118.3 (2)
C11-N1-C15	120.4 (2)	C8-C9-C10	118.4 (2)
C12-N1-C15	116.88 (19)	C4-C10-C5	122.0 (2)
C2-C1-C9	120.4 (2)	C4-C10-C9	120.0 (2)
C2-C1-C11	120.2 (2)	C5-C10-C9	117.9 (2)
C9-C1-C11	119.2 (2)	O1-C11-N1	122.7 (2)
C1-C2-C3	121.5 (2)	O1-C11-C1	118.4 (2)
C4-C3-C2	119.6 (2)	N1-C11-C1	118.9 (2)
C3-C4-C10	120.3 (2)	N1-C12-C13	112.2 (2)
C6-C5-C10	122.4 (3)	N1-C12-C14	112.2 (2)
C5-C6-C7	119.2 (3)	C13-C12-C14	110.9 (2)
C8-C7-C6	121.5 (3)	N1-C15-C16	112.5 (2)
C7-C8-C9	120.6 (3)	N1-C15-C17	112.1 (2)
C1-C9-C8	123.4 (2)	C16-C15-C17	112.9 (2)

Table 2	
Hydrogen-bonding	geon

Hydrogen-bonding geometry (Å, $^{\circ}$).						
$\overline{D-\mathrm{H}\cdots A}$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$		
$C5-H5\cdots O1^i$	0.95	2.41	3.327 (3)	162		
Symmetry code: (i)	$1 - x, y - \frac{1}{2}, \frac{1}{2} - \frac{1}{2}$	Ζ.				

All H atoms were placed geometrically and allowed to ride during subsequent refinement with an isotropic displacement parameter fixed at $1.2U_{\rm eq}$ for the carbon to which the hydrogen was attached. For the methyl groups, U_{iso} was fixed at $1.5U_{eq}$ for the carbon.

Data collection: COLLECT (Nonius BV, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

We thank the EPSRC for financial assistance with purchase of the CCD diffractometers.

References

Beak, P., Kerrick S. T. & Gallagher, D. J. (1993). J. Am. Chem. Soc. 115, 10628-10636.

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bowles, P., Clayden, J., Helliwell, M., McCarthy, C., Tomkinson, M. & Westlund, N. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 2607-2616.

Clayden, J., Frampton, C. S., McCarthy, C. & Westlund, N. (1999). Tetrahedron, 55, 14161-14184.

Nonius (1998). COLLECT. Enraf-Nonius, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326.

Sheldrick, G. M. (1993). XP. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Snieckus, V. (1990). Chem. Rev. 90, 879-933.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.